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In the conventional approach 1o Juantum mechanics, indeterminism is an aiom
and nonlocality is a theorem, e consider.inverting the logical order, making
nonlocality an q.xiom and indeterminism q theorem. Nonlocal “superquantum "
correlations, preserving relaripistic causality, can violate the CHSH inequality
more sirongly than any quantum correlations,
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Introduction to non-local boxes and wirings

@ Two measures of correlation with the tensorization property

e Maximal correlation
o Hypercontractivity ribbon

Main result: maximal correlation and hypercontractivity ribbon are
monotone under wirings

Example: simulation of isotropic boxes with each other
e Resolves a conjecture of Lang, Vértesi, Navascués 14

Computability of the above invariants
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Local measurements on bipartite physical systems

x y
ANge g
a b
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al b

@ p(a,b|x,y) = the probability of outcomes a, b under measurement
settings x, y



Local measurements on bipartite physical systems

T y
ANge g
a b

7| v

al b

@ p(a,b|x,y) = the probability of outcomes a, b under measurement
settings x, y

@ No-signaling: instantaneous signaling is impossible

e p(alxy) isindependent of y
o p(blxy) is independent of x



Isotropic boxes
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e Example: x,y,a,b € {0,1},and0 <7 < 1

L ifa®b=xy
PRTI(avb|xay> = {14 . ’
- otherwise.
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Wirings
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@ Wirings are the local operations in the box world

@ [Allcock et al. "09] The set of physical non-local boxes is closed under
wirings



@ Wirings are the local operations in the box world

@ [Allcock et al. "09] The set of physical non-local boxes is closed under
wirings
@ Problem: 1/2 <7’ <n< 1.

Can we generate PR,, from some copies of PR, under wirings?

o No if there are two [Short *09] or at most nine [Forster *11] copies of
PR, available
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@ Problem: Given some samples of pap NN /
can we generate one sample from g/ p/ :

under local operations? _
| |




Tensorization of measures of correlation

@ Problem: Given some samples of pap NN /
can we generate one sample from g/ p/ : .

under local operations? = - >
| B

@ Measures of correlation are monotone

|
under local operations @ RN /

o I(A,B), <I(A",B"), = No
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Tensorization of measures of correlation

@ Problem: Given some samples of pap NN /
can we generate one sample from g/ p/ : .

under local operations? = - >
| B

@ Measures of correlation are monotone

|
under local operations @ RN /

e I(A,B), <I(A",B'), = No NOT quite right!
I(A",B")» = nl(A, B),,.
@ [Tensorization]: Is there a measure of correlation p such that

p(A",B") = p(A,B),?



Tensorization of measures of correlation

@ Problem: Given some samples of pap NN /
can we generate one sample from g/ p/ : .

under local operations? = - >
| B

@ Measures of correlation are monotone

|
under local operations @ RN /

e I(A,B), <I(A",B'), = No NOT quite right!
I(A",B")» = nl(A, B),,.
@ [Tensorization]: Is there a measure of correlation p such that

p(A",B") = p(A,B),?

e Maximal correlation
o Hypercontractivity ribbon



Maximal correlation

@ Bipartite distribution pup

Cov(f,g)

p(A,B) := max m

fAZ.A—)R, gBZB—)R
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@ Bipartite distribution pup

Cov(f,g)
Var(f, | Var[g]

e 0<p(A,B) <1, p(A,B) = 0iff pap = pa - ps

p(A,B) := max fa:A—=R, gg:B—->R
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@ [Tensorization]: p(A",B") = p(A, B)

@ [Data processing]: p(-, ) is monotone under local operations



Maximal correlation

@ Bipartite distribution pup

Cov(f,g)
Var(f, | Var[g]

e 0<p(A,B) <1, p(A,B) = 0iff pap = pa - ps

p(A,B) := max fa:A—=R, gg:B—->R
@ [Tensorization]: p(A",B") = p(A, B)
@ [Data processing]: p(-, ) is monotone under local operations

@ Maximal correlation for non-local boxes:

p(AvB|X7 Y) = maXp(AvB|X =x,Y :y)
X,y



Maximal correlation under wirings

z| W

a b

Lemma: For any no-signaling box p(ab|xy) we have

p(A; B) < max{p(A, BX, Y), p(X, Y)}.



Maximal correlation under wirings

z| W

a b

Lemma: For any no-signaling box p(ab|xy) we have
p(A, B) < max{p(A,B|X,Y), p(X,Y)}.
Proof:
E[fg] = ExyEap|xr [f3]

<Exy []EA\XY[f] - Epxy[g] + py/ Varaxy[f] - VarB\XY[g]]

= Exy [EA|X[f] 'Es\y[g]] + PEXY{ Vary x [f] 'Varmy[g]]

<ExEax[f] - EvEpy[g] + P\/VMX]EMX [f] - VaryEgy[g] + P]EXY[ Vary x[f] - Varg|y[g] }

<ExEx[f] - EvEpy[g] + P\/VaerMx[f] - VaryEg|y[g] + p\/]ExVafA\x[f] - EyVarg)y[g]

<Eax[f] - Esy([g] + P\/(VHIXIEMx[f] + ExVaryx[f]) (VaryEg)y[g] + EyVargy[g])

=Eax[f] - Esr(g] + p/ Varax(f]Varpy[g].



Maximal correlation under wirings

Maximal correlation of no-signaling boxes does not increase under wirings.




Maximal correlation under wirings

Maximal correlation of no-signaling boxes does not increase under wirings.

The proof doesn’t work for these types of wirings! We need new tools.




Hypercontractivity ribbon

o [Ahlswede, Gédcs *76] (A1, \2) € R(A, B) iff

Elfags] < WAH*H&’BH ; Vfa, 8B

€
A2

Schatten norm: |[fA||% = EWAP//\]]/\I
1



Hypercontractivity ribbon

o [Ahlswede, Gédcs *76] (A1, \2) € R(A, B) iff

Elfags] < WAH*H&’BH ; Vfa, 8B

1
A2
Schatten norm: |[fA||% = EWAP//\]]/\I
1
o [Nair ’14] (A1, \2) € R(A, B) iff:

I(U;AB) > MI(U;A) + XI(U; B), VYpulas



Hypercontractivity ribbon

(1,1)

o [Ahlswede, Gédcs *76] (A1, \2) € R(A, B) iff

Elfags] < WAH%]HgBH ; Vfa, 8B

€
A2

Schatten norm: |[fA||% = EWAW’\‘]’\‘
1

@ [Nair '14] (A, \2) € R(A, B) iff:

I(U;AB) > MI(U;A) + XI(U; B), Vpulas

e R(A,B) = [0,1]? iff A, B are independent



Hypercontractivity ribbon

(1,1)

o [Ahlswede, Gédcs *76] (A1, \2) € R(A, B) iff

Elfags) < HfAH%]”gBH%Za Vfa, 8B

Schatten norm: |[fA||% = EWAW’\‘]’\‘
1

@ [Nair '14] (A, \2) € R(A, B) iff:

I(U;AB) > MI(U;A) + XI(U; B), Vpulas

e R(A,B) = [0,1]? iff A, B are independent
@ [Tensorization]: R(A", B") = R(A, B)

@ [Data processing]: JR(-, -) expands under local operations



Hypercontractivity ribbon under wirings

Hypercontractivity ribbon for non-local boxes:

R(A,BIX,Y) == |R(A,BIX = x,Y =y).

X,y



Hypercontractivity ribbon under wirings

Hypercontractivity ribbon for non-local boxes:

R(A,BIX,Y) == |R(A,BIX = x,Y =y).

X,y

Suppose that a no-signaling box p(a’b’|x’y") can be generated from some
copies of a box p(ab|xy) under wirings. Then

R(A,B|X,Y) CRA,B'IX",Y).




Hypercontractivity ribbon under wirings

Hypercontractivity ribbon for non-local boxes:

R(A,BIX,Y) == |R(A,BIX = x,Y =y).

X,y

Suppose that a no-signaling box p(a’b’|x’y") can be generated from some
copies of a box p(ab|xy) under wirings. Then

R(A,B|X,Y) CRA,B'IX",Y).

Proof: Chain rule!



Example: Isotropic boxes

n ifa®b=uxy
PRﬂ(avb|x7y) = {14 . ’
- otherwise.

o p(PR,) =17



Example: Isotropic boxes

=S

n ifa® b= xy,

PR, (a,blx,y) := {1477 otherwise.

. ‘

o p(PR,) =17

Corollary

@ For 0 <7’ < n < 1, using an arbitrary number of copies of PR,, a
single copy of PR,, cannot be generated under wirings.




Example: Isotropic boxes

=S

Lin ifa® b= xy,

PR, (a,blx,y) := {1477 otherwise

. ‘

o p(PR,) =17

Corollary

@ For 0 <7’ < n < 1, using an arbitrary number of copies of PR,, a
single copy of PR,, cannot be generated under wirings.

e For 1/v2 <#' < n < 1, using an arbitrary number of copies of PR/, a
single copy of PR,, cannot be generated under wirings with shared
randomness. )




Ribbon in terms of a lower convex envelope

@ Computation of maximal correlation is easy.
How about computation of the ribbon?



Ribbon in terms of a lower convex envelope

@ Computation of maximal correlation is easy.
How about computation of the ribbon?

@ Define T'(-) on the probability simplex by

qas — Y(qap) = MH(qa) + M2H(qs) — H(qaB)



Ribbon in terms of a lower convex envelope

@ Computation of maximal correlation is easy.
How about computation of the ribbon?

@ Define T'(-) on the probability simplex by
qa — Y(qap) = MH(qa) + M2H(q5) — H(qas)

o Let Y be the lower convex envelope of T

distributions



Ribbon in terms of a lower convex envelope

@ Computation of maximal correlation is easy.
How about computation of the ribbon?

@ Define T'(-) on the probability simplex by
qa — Y(qap) = MH(qa) + M2H(q5) — H(qas)

o Let Y be the lower convex envelope of T

distributions

For every distribution psp, we have (A1, A2) € R(A, B) if and only if

T (pag) = Y (pas)-




Maximal correlation ribbon

distributions

@ Definition: (A1, \2) € &(A, B) if

Var[f] > A\ VaraEg4 [f] + A2 VargE 4 [f], Vfas



Maximal correlation ribbon

distributions

@ Definition: (A1, \2) € &(A, B) if

Var[f] > A\ VaraEg4 [f] + A2 VargE 4 [f], Vfas

o M(A,B) C 6(A,B)



Maximal correlation ribbon

distributions

@ Definition: (A1, \2) € &(A, B) if

Var[f] > A\ VaraEg4 [f] + A2 VargE 4 [f], Vfas

e %i(A,B) C S(A,B)
@ [Tensorization]: (A", B") = G(A,B)

@ [Data processing]: &(-, -) expands under local operations
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Maximal correlation ribbon for non-local boxes

@ Maximal correlation ribbon for non-local boxes:

S(A,B|X,Y) = S(A,BIX =x,Y =y).

X,y

Suppose that a no-signaling box p(a’b’|x’y") can be generated from some
copies of box p(ab|xy) under wirings. Then

S(A,B|X,Y) C S(A, B X, Y).




Maximal correlation ribbon for non-local boxes

@ Maximal correlation ribbon for non-local boxes:

S(A,B|X,Y) = S(A,BIX =x,Y =y).

X,y

Theorem

Suppose that a no-signaling box p(a’b’|x’y") can be generated from some
copies of box p(ab|xy) under wirings. Then

S(A,B|X,Y) C S(A, B X, Y).

Theorem

o 02(A,B) :inf{lj\z’\‘ ‘(AI,AZ) e G(A,B)}

| A\




Maximal correlation ribbon for non-local boxes

@ Maximal correlation ribbon for non-local boxes:

S(A,B|X,Y) = S(A,BIX =x,Y =y).

Xy

Theorem

Suppose that a no-signaling box p(a’b’|x’y") can be generated from some
copies of box p(ab|xy) under wirings. Then

S(A,B|X,Y) C S(A, B X, Y).

| A\

Theorem

o o2(A,B) = 1nf{1 A ‘()\1,)\2) ee(A,B)}

@ Maximal correlation is monotone under wirings




@ Introduced hypercontractivity ribbon for non-local boxes and
Showed that it expands under wirings

@ Defined Maximal correlation ribbon
@ Showed that maximal correlation ribbon expands under wirings

@ Characterized maximal correlation in terms of maximal correlation
ribbon

@ Maximal correlation is monotone under wirings

@ There is a continuum of closed sets of boxes
o Was a conjecture [Lang, Vértesi, Navascués *14]



