Wiring of No-Signaling Boxes Expands the Hypercontractivity Ribbon

Salman A. Beigi

Institute for Research in Fundamental Sciences (IPM)
Tehran, Iran

January 12, 2015

Joint work with Amin Gohari arXiv:1409.3665

ON THE EINSTEIN PODOLSKY ROSEN PARADOX*

J. S. BELL[†]

Department of Physics, University of Wisconsin, Madison, Wisconsin

(Received 4 November 1964)

Quantum Nonlocality as an Axiom

Sandu Popescu1 and Daniel Rohrlich2

Received July 2, 1993: revised July 19, 1993

In the conventional approach to quantum mechanics, indeterminism is an axiom and nonlocality is a theorem. We consider inverting the logical order, making nonlocality an axiom and indeterminism a theorem. Nonlocal 'superquantum' correlations, preserving relativistic causality, can violate the CHSH inequality more strongly than any quantum correlations.

Quantum Nonlocality as an Avie

Limit on Nonlocality in Any World in Which Communication Complexity Is Not Trivial

Gilles Brassard, ¹ Harry Buhrman, ^{2,3} Noah Linden, ⁴ André Allan Méthot, ¹ Alain Tapp, ¹ and Falk Unger ³ ¹Département IRO, Université de Montréal, C.P. 6128, Succursale Centre-Ville, Montréal, Québec H3C 3J7, Canada ²ILLC, Universiteit van Amsterdam, Plantage Muidergracht 24, 1018 TV Amsterdam, The Netherlands ³Centrum voor Wiskunde en Informatica (CWI), Post Office Box 94079, 1090 GB Amsterdam, The Netherlands ⁴Department of Mathematics, University of Bristol, University Walk, Bristol, BS8 1TW, United Kingdom

Information causality as a physical principle

Marcin Pawłowski 1 , Tomasz Paterek 2 , Dagomir Kaszlikowski 2 , Valerio Scarani 2 , Andreas Winter 2 .3 & Marek $\dot{z}_{ukowski}$

Département 2 2 LLC. Université en Information 2 2 LLC. Université par 3 Centrum voor Wiskunde en Informatics, Université par 4 2006; par 4 Department of Mathematics, Université par 4 March 2006; par 4 Department of Mathematics (Received 2 March 2 Department of Mathematics (Received 2 Department of Mathematic

PHYSICAL REVIEW A 80, 062107 (2009)

Closed sets of nonlocal correlations

Jonathan Allcock, ¹ Nicolas Brunner, ² Noah Linden, ¹ Sandu Popescu, ² Paul Skrzypczyk, ² and Tamás Vértesi³

¹ Department of Mathematics, University of Bristol, Bristol BS8 1TW, United Kingdom

² H.H. Wills Physics Laboratory, University of Bristol, Tyndall Avenue, Bristol BS8 1TL, United Kingdom

³ Institute of Nuclear Research, Hungarian Academy of Sciences, PO. Box 51, H-4001 Debrecen, Hungary

(Received 11 August 2009; revised manuscript received 27 August 2009; published 11 December 2009)

Outline

- Introduction to non-local boxes and wirings
- Two measures of correlation with the tensorization property
 - Maximal correlation
 - Hypercontractivity ribbon
- Main result: maximal correlation and hypercontractivity ribbon are monotone under wirings
- Example: simulation of isotropic boxes with each other
 - Resolves a conjecture of Lang, Vértesi, Navascués '14
- Computability of the above invariants

• p(a, b|x, y) = the probability of outcomes a, b under measurement settings x, y

- p(a, b|x, y) = the probability of outcomes a, b under measurement settings x, y
- No-signaling: instantaneous signaling is impossible
 - p(a|xy) is independent of y
 - p(b|xy) is independent of x

Isotropic boxes

• Example: $x, y, a, b \in \{0, 1\}$, and $0 \le \eta \le 1$

$$\operatorname{PR}_{\eta}(a,b|x,y) := \begin{cases} \frac{1+\eta}{4} & \text{if } a \oplus b = xy, \\ \frac{1-\eta}{4} & \text{otherwise.} \end{cases}$$

- Wirings are the local operations in the box world
- [Allcock et al. '09] The set of physical non-local boxes is closed under wirings

- Wirings are the local operations in the box world
- [Allcock et al. '09] The set of physical non-local boxes is closed under wirings
- Problem: $1/2 \le \eta' < \eta \le 1$. Can we generate PR_{η} from some copies of $PR_{\eta'}$ under wirings?
 - No if there are two [Short '09] or at most nine [Forster '11] copies of $PR_{\eta'}$ available

• Problem: Given some samples of p_{AB} can we generate one sample from $q_{A'B'}$ under local operations?

- Problem: Given some samples of p_{AB} can we generate one sample from $q_{A'B'}$ under local operations?
- Measures of correlation are monotone under local operations
- $I(A,B)_p < I(A',B')_q \Rightarrow \text{No}$

- Problem: Given some samples of p_{AB} can we generate one sample from $q_{A'B'}$ under local operations?
- Measures of correlation are monotone under local operations

•
$$I(A,B)_p < I(A',B')_q \Rightarrow \text{No}$$

NOT quite right!

$$I(A^n, B^n)_{p^n} = nI(A, B)_p.$$

- Problem: Given some samples of p_{AB} can we generate one sample from $q_{A'B'}$ under local operations?
- Measures of correlation are monotone under local operations

• $I(A,B)_p < I(A',B')_q \Rightarrow \text{No}$

NOT quite right!

$$I(A^n,B^n)_{p^n}=nI(A,B)_p.$$

• [Tensorization]: Is there a measure of correlation ρ such that

$$\rho(A^n, B^n)_{p^n} = \rho(A, B)_p?$$

- Problem: Given some samples of p_{AB} can we generate one sample from $q_{A'B'}$ under local operations?
- Measures of correlation are monotone under local operations

•
$$I(A,B)_p < I(A',B')_q \Rightarrow \text{No}$$

NOT quite right!

$$I(A^n,B^n)_{p^n}=nI(A,B)_p.$$

• [Tensorization]: Is there a measure of correlation ρ such that

$$\rho(A^n, B^n)_{p^n} = \rho(A, B)_p?$$

- Maximal correlation
- Hypercontractivity ribbon

$$ho(A,B) := \max rac{\operatorname{Cov}(f,g)}{\sqrt{\operatorname{Var}[f_A]\operatorname{Var}[g_B]}} \qquad \qquad f_A: \mathcal{A} o \mathbb{R}, \quad g_B: \mathcal{B} o \mathbb{R}$$

$$ho(A,B) := \max rac{\operatorname{Cov}(f,g)}{\sqrt{\operatorname{Var}[f_A]\operatorname{Var}[g_B]}} \qquad \qquad f_A: \mathcal{A} o \mathbb{R}, \quad g_B: \mathcal{B} o \mathbb{R}$$

•
$$0 \le \rho(A, B) \le 1$$
, $\rho(A, B) = 0$ iff $p_{AB} = p_A \cdot p_B$

$$ho(A,B) := \max rac{\operatorname{Cov}(f,g)}{\sqrt{\operatorname{Var}[f_A]\operatorname{Var}[g_B]}} \qquad \qquad f_A: \mathcal{A} o \mathbb{R}, \quad g_B: \mathcal{B} o \mathbb{R}$$

- $0 \le \rho(A, B) \le 1$, $\rho(A, B) = 0$ iff $p_{AB} = p_A \cdot p_B$
- [Tensorization]: $\rho(A^n, B^n) = \rho(A, B)$
- [Data processing]: $\rho(\cdot, \cdot)$ is monotone under local operations

$$ho(A,B) := \max rac{\operatorname{Cov}(f,g)}{\sqrt{\operatorname{Var}[f_A]\operatorname{Var}[g_B]}} \qquad \qquad f_A: \mathcal{A} o \mathbb{R}, \quad g_B: \mathcal{B} o \mathbb{R}$$

- $0 \le \rho(A, B) \le 1$, $\rho(A, B) = 0$ iff $p_{AB} = p_A \cdot p_B$
- [Tensorization]: $\rho(A^n, B^n) = \rho(A, B)$
- [Data processing]: $\rho(\cdot, \cdot)$ is monotone under local operations
- Maximal correlation for non-local boxes:

$$\rho(A, B|X, Y) := \max_{x, y} \rho(A, B|X = x, Y = y)$$

Lemma: For any no-signaling box p(ab|xy) we have

$$\rho(A,B) \leq \max\{\rho(A,B|X,Y),\rho(X,Y)\}.$$

Lemma: For any no-signaling box p(ab|xy) we have

$$\rho(A,B) \leq \max\{\rho(A,B|X,Y),\rho(X,Y)\}.$$

Proof:

$$\begin{split} \mathbb{E}[fg] &= \mathbb{E}_{XY} \mathbb{E}_{AB|XY}[fg] \\ &\leq \mathbb{E}_{XY} \left[\mathbb{E}_{A|XY}[f] \cdot \mathbb{E}_{B|XY}[g] + \rho \sqrt{\text{Var}_{A|XY}[f] \cdot \text{Var}_{B|XY}[g]} \right] \\ &= \mathbb{E}_{XY} \left[\mathbb{E}_{A|X}[f] \cdot \mathbb{E}_{B|Y}[g] \right] + \rho \mathbb{E}_{XY} \left[\sqrt{\text{Var}_{A|X}[f] \cdot \text{Var}_{B|Y}[g]} \right] \\ &\leq \mathbb{E}_{X} \mathbb{E}_{A|X}[f] \cdot \mathbb{E}_{Y} \mathbb{E}_{B|Y}[g] + \rho \sqrt{\text{Var}_{X} \mathbb{E}_{A|X}[f] \cdot \text{Var}_{Y} \mathbb{E}_{B|Y}[g]} + \rho \mathbb{E}_{XY} \left[\sqrt{\text{Var}_{A|X}[f] \cdot \text{Var}_{B|Y}[g]} \right] \\ &\leq \mathbb{E}_{X} \mathbb{E}_{A|X}[f] \cdot \mathbb{E}_{Y} \mathbb{E}_{B|Y}[g] + \rho \sqrt{\text{Var}_{X} \mathbb{E}_{A|X}[f] \cdot \text{Var}_{Y} \mathbb{E}_{B|Y}[g]} + \rho \sqrt{\mathbb{E}_{X} \text{Var}_{A|X}[f] \cdot \mathbb{E}_{Y} \text{Var}_{B|Y}[g]} \\ &\leq \mathbb{E}_{AX}[f] \cdot \mathbb{E}_{BY}[g] + \rho \sqrt{\left(\text{Var}_{X} \mathbb{E}_{A|X}[f] + \mathbb{E}_{X} \text{Var}_{A|X}[f]\right) \left(\text{Var}_{Y} \mathbb{E}_{B|Y}[g] + \mathbb{E}_{Y} \text{Var}_{B|Y}[g]\right)} \\ &= \mathbb{E}_{AX}[f] \cdot \mathbb{E}_{BY}[g] + \rho \sqrt{\text{Var}_{AX}[f] \text{Var}_{BY}[g]}. \end{split}$$

Theorem

Maximal correlation of no-signaling boxes does not increase under wirings.

Theorem

Maximal correlation of no-signaling boxes does not increase under wirings.

The proof doesn't work for these types of wirings! We need new tools.

Hypercontractivity ribbon

• [Ahlswede, Gács '76] $(\lambda_1, \lambda_2) \in \mathfrak{R}(A, B)$ iff

$$\mathbb{E}[f_A g_B] \leq \|f_A\|_{\frac{1}{\lambda_1}} \|g_B\|_{\frac{1}{\lambda_2}}, \qquad \forall f_A, g_B$$

Schatten norm:
$$||f_A||_{\frac{1}{\lambda_1}} = \mathbb{E}[|f_A|^{1/\lambda_1}]^{\lambda_1}$$

Hypercontractivity ribbon

• [Ahlswede, Gács '76] $(\lambda_1, \lambda_2) \in \Re(A, B)$ iff

$$\mathbb{E}[f_A g_B] \le \|f_A\|_{\frac{1}{\lambda_1}} \|g_B\|_{\frac{1}{\lambda_2}}, \qquad \forall f_A, g_B$$

Schatten norm: $||f_A||_{\frac{1}{\lambda_1}} = \mathbb{E}[|f_A|^{1/\lambda_1}]^{\lambda_1}$

• [Nair '14] $(\lambda_1, \lambda_2) \in \mathfrak{R}(A, B)$ iff:

$$I(U;AB) \ge \lambda_1 I(U;A) + \lambda_2 I(U;B), \qquad \forall p_{U|AB}$$

Hypercontractivity ribbon

• [Ahlswede, Gács '76] $(\lambda_1, \lambda_2) \in \Re(A, B)$ iff

$$\mathbb{E}[f_A g_B] \leq \|f_A\|_{\frac{1}{\lambda_1}} \|g_B\|_{\frac{1}{\lambda_2}},$$

 $\forall f_A, g_B$

Schatten norm:
$$||f_A||_{\frac{1}{\lambda_1}} = \mathbb{E}[|f_A|^{1/\lambda_1}]^{\lambda_1}$$

(1,1)

• [Nair '14] $(\lambda_1, \lambda_2) \in \mathfrak{R}(A, B)$ iff:

$$I(U;AB) \ge \lambda_1 I(U;A) + \lambda_2 I(U;B),$$

$$\forall p_{U|AB}$$

• $\Re(A, B) = [0, 1]^2$ iff A, B are independent

Hypercontractivity ribbon

• [Ahlswede, Gács '76] $(\lambda_1, \lambda_2) \in \mathfrak{R}(A, B)$ iff

$$\mathbb{E}[f_Ag_B] \leq \|f_A\|_{\frac{1}{\lambda_1}} \|g_B\|_{\frac{1}{\lambda_2}},$$

 $\forall f_A, g_B$

Schatten norm: $||f_A||_{\frac{1}{\lambda_1}} = \mathbb{E}[|f_A|^{1/\lambda_1}]^{\lambda_1}$

• [Nair '14] $(\lambda_1, \lambda_2) \in \mathfrak{R}(A, B)$ iff:

$$I(U;AB) \ge \lambda_1 I(U;A) + \lambda_2 I(U;B),$$

$$\forall p_{U|AB}$$

- $\Re(A, B) = [0, 1]^2$ iff A, B are independent
- [Tensorization]: $\Re(A^n, B^n) = \Re(A, B)$
- [Data processing]: $\Re(\cdot, \cdot)$ expands under local operations

Hypercontractivity ribbon under wirings

Hypercontractivity ribbon for non-local boxes:

$$\mathfrak{R}(A,B|X,Y) := \bigcap \mathfrak{R}(A,B|X=x,Y=y).$$

Hypercontractivity ribbon under wirings

Hypercontractivity ribbon for non-local boxes:

$$\mathfrak{R}(A,B|X,Y) := \bigcap_{x,y} \mathfrak{R}(A,B|X=x,Y=y).$$

Theorem

Suppose that a no-signaling box p(a'b'|x'y') can be generated from some copies of a box p(ab|xy) under wirings. Then

$$\mathfrak{R}(A, B|X, Y) \subseteq \mathfrak{R}(A', B'|X', Y').$$

Hypercontractivity ribbon under wirings

Hypercontractivity ribbon for non-local boxes:

$$\mathfrak{R}(A, B|X, Y) := \bigcap_{x, y} \mathfrak{R}(A, B|X = x, Y = y).$$

Theorem

Suppose that a no-signaling box p(a'b'|x'y') can be generated from some copies of a box p(ab|xy) under wirings. Then

$$\mathfrak{R}(A, B|X, Y) \subseteq \mathfrak{R}(A', B'|X', Y').$$

Proof: Chain rule!

Example: Isotropic boxes

$$PR_{\eta}(a, b|x, y) := \begin{cases} \frac{1+\eta}{4} & \text{if } a \oplus b = xy, \\ \frac{1-\eta}{4} & \text{otherwise.} \end{cases}$$

Example: Isotropic boxes

$$\operatorname{PR}_{\eta}(a,b|x,y) := \begin{cases} \frac{1+\eta}{4} & \text{if } a \oplus b = xy, \\ \frac{1-\eta}{4} & \text{otherwise.} \end{cases}$$

• $\rho(PR_{\eta}) = \eta$

Corollary

• For $0 \le \eta' < \eta \le 1$, using an arbitrary number of copies of $PR_{\eta'}$, a single copy of PR_{η} cannot be generated under wirings.

Example: Isotropic boxes

$$\operatorname{PR}_{\eta}(a,b|x,y) := \begin{cases} \frac{1+\eta}{4} & \text{if } a \oplus b = xy, \\ \frac{1-\eta}{4} & \text{otherwise.} \end{cases}$$

 $\rho(PR_{\eta}) = \eta$

Corollary

- For $0 \le \eta' < \eta \le 1$, using an arbitrary number of copies of $PR_{\eta'}$, a single copy of PR_{η} cannot be generated under wirings.
- For $1/\sqrt{2} \le \eta' < \eta \le 1$, using an arbitrary number of copies of $PR_{\eta'}$, a single copy of PR_{η} cannot be generated under wirings with shared randomness.

• Computation of maximal correlation is easy. How about computation of the ribbon?

- Computation of maximal correlation is easy. How about computation of the ribbon?
- Define $\Upsilon(\cdot)$ on the probability simplex by

$$q_{AB} \mapsto \Upsilon(q_{AB}) = \lambda_1 H(q_A) + \lambda_2 H(q_B) - H(q_{AB})$$

- Computation of maximal correlation is easy. How about computation of the ribbon?
- Define $\Upsilon(\cdot)$ on the probability simplex by

$$q_{AB} \mapsto \Upsilon(q_{AB}) = \lambda_1 H(q_A) + \lambda_2 H(q_B) - H(q_{AB})$$

• Let $\widetilde{\Upsilon}$ be the lower convex envelope of Υ

- Computation of maximal correlation is easy. How about computation of the ribbon?
- Define $\Upsilon(\cdot)$ on the probability simplex by

$$q_{AB} \mapsto \Upsilon(q_{AB}) = \lambda_1 H(q_A) + \lambda_2 H(q_B) - H(q_{AB})$$

• Let $\widetilde{\Upsilon}$ be the lower convex envelope of Υ

Lemma

For every distribution p_{AB} , we have $(\lambda_1, \lambda_2) \in \Re(A, B)$ if and only if $\Upsilon(p_{AB}) = \widetilde{\Upsilon}(p_{AB})$.

Maximal correlation ribbon

• Definition:
$$(\lambda_1, \lambda_2) \in \mathfrak{S}(A, B)$$
 if

$$Var[f] \ge \lambda_1 Var_A \mathbb{E}_{B|A}[f] + \lambda_2 Var_B \mathbb{E}_{A|B}[f],$$

 $\forall f_{AB}$

Maximal correlation ribbon

• Definition: $(\lambda_1, \lambda_2) \in \mathfrak{S}(A, B)$ if

$$Var[f] \ge \lambda_1 Var_A \mathbb{E}_{B|A}[f] + \lambda_2 Var_B \mathbb{E}_{A|B}[f], \qquad \forall f_{AB}$$

 $\bullet \ \mathfrak{R}(A,B) \subseteq \mathfrak{S}(A,B)$

Maximal correlation ribbon

• Definition: $(\lambda_1, \lambda_2) \in \mathfrak{S}(A, B)$ if

$$Var[f] \ge \lambda_1 Var_A \mathbb{E}_{B|A}[f] + \lambda_2 Var_B \mathbb{E}_{A|B}[f], \quad \forall f_{AB}$$

- $\mathfrak{R}(A,B)\subseteq\mathfrak{S}(A,B)$
- [Tensorization]: $\mathfrak{S}(A^n, B^n) = \mathfrak{S}(A, B)$
- [Data processing]: $\mathfrak{S}(\cdot, \cdot)$ expands under local operations

• Maximal correlation ribbon for non-local boxes:

$$\mathfrak{S}(A,B|X,Y) := \bigcap_{x,y} \mathfrak{S}(A,B|X=x,Y=y).$$

• Maximal correlation ribbon for non-local boxes:

$$\mathfrak{S}(A,B|X,Y) := \bigcap_{x,y} \mathfrak{S}(A,B|X=x,Y=y).$$

Theorem

Suppose that a no-signaling box p(a'b'|x'y') can be generated from some copies of box p(ab|xy) under wirings. Then

$$\mathfrak{S}(A,B|X,Y)\subseteq\mathfrak{S}(A',B'|X',Y').$$

Maximal correlation ribbon for non-local boxes:

$$\mathfrak{S}(A, B|X, Y) := \bigcap_{x,y} \mathfrak{S}(A, B|X = x, Y = y).$$

Theorem

Suppose that a no-signaling box p(a'b'|x'y') can be generated from some copies of box p(ab|xy) under wirings. Then

$$\mathfrak{S}(A, B|X, Y) \subseteq \mathfrak{S}(A', B'|X', Y').$$

Theorem

•
$$\rho^2(A,B) = \inf \left\{ \frac{1-\lambda_1}{\lambda_2} \mid (\lambda_1,\lambda_2) \in \mathfrak{S}(A,B) \right\}$$

Maximal correlation ribbon for non-local boxes:

$$\mathfrak{S}(A,B|X,Y) := \bigcap_{x,y} \mathfrak{S}(A,B|X=x,Y=y).$$

Theorem

Suppose that a no-signaling box p(a'b'|x'y') can be generated from some copies of box p(ab|xy) under wirings. Then

$$\mathfrak{S}(A, B|X, Y) \subseteq \mathfrak{S}(A', B'|X', Y').$$

Theorem

- $\rho^2(A,B) = \inf \left\{ \frac{1-\lambda_1}{\lambda_2} \mid (\lambda_1,\lambda_2) \in \mathfrak{S}(A,B) \right\}$
- Maximal correlation is monotone under wirings

Summary

- Introduced hypercontractivity ribbon for non-local boxes and Showed that it expands under wirings
- Defined Maximal correlation ribbon
- Showed that maximal correlation ribbon expands under wirings
- Characterized maximal correlation in terms of maximal correlation ribbon
- Maximal correlation is monotone under wirings
- There is a continuum of closed sets of boxes
 - Was a conjecture [Lang, Vértesi, Navascués '14]