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In the conventional approach to quantum mechanics, &determinism is an axiom and nonlocality is a theorem. We consider inverting the logical order, mak#1g nonlocality an axiom and indeterminism a theorem. Nonlocal "superquantum" correlations, preserving relativistic causality, can violate the CHSH inequality more strongly than any quantum correlations. 

What is the quantum principle? J. Wheeler named it the "Merlin principle" after the legendary magician who, when pursued, could change his form again and again. The more we pursue the quantum principle, the more it changes: from discreteness, to indeterminism, to sums over paths, to many worlds, and so on. By comparison, the relativity principle is easy to grasp. Relativity theory and quantum theory underlie all of physics, but we do not always know how to reconcile them. Here, we take nonlocality as the quantum principle, and we ask what nonlocality and relativistic causality together imply. It is a pleasure to dedicate this paper to Professor Fritz Rohrlich, who has contributed much to the juncture of quantum theory and relativity theory, including its most spectacular success, quantum electrodynamics, and who has written both on quantum paradoxes tll and the logical structure of physical theory, t2~ Bell t31 proved that some predictions of quantum mechanics cannot be reproduced by any theory of local physical variables. Although Bell worked within nonrelativistic quantum theory, the definition of local variable is relativistic: a local variable can be influenced only by events in its back- ward light cone, not by events outside, and can influence events in its 
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Bell proved that quantum entanglement enables two spacelike separated parties to exhibit classically

impossible correlations. Even though these correlations are stronger than anything classically achievable,

they cannot be harnessed to make instantaneous (faster than light) communication possible. Yet, Popescu

and Rohrlich have shown that even stronger correlations can be defined, under which instantaneous

communication remains impossible. This raises the question: Why are the correlations achievable by

quantum mechanics not maximal among those that preserve causality? We give a partial answer to this

question by showing that slightly stronger correlations would result in a world in which communication

complexity becomes trivial.
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PACS numbers: 03.65.Ud, 03.67.Hk, 03.67.Mn

Entanglement can be harnessed to accomplish amazing

information processing feats. The first proof that genuinely

nonclassical behavior could be produced by quantum-

mechanical devices was given by Bell, who proved that

entanglement enables two spacelike separated parties to

exhibit correlations that are stronger than anything allowed

by classical physics [1]. Later, Clauser, Horne, Shimony,

and Holt (CHSH), inspired by the work of Bell, proposed

another inequality [2], which was easier to translate into a

feasible experiment to test local hidden-variable theories.

Their proposal fits nicely into the more modern framework

of nonlocal boxes, introduced by Popescu and Rohrlich

[ [3], Eq. (7)].

A nonlocal box (NLB) is an imaginary device that has an

input-output port at Alice’s location and another one at

Bob’s, even though Alice and Bob can be spacelike sepa-

rated. Whenever Alice feeds a bit x into her input port, she

gets a uniformly distributed random output bit a, locally

uncorrelated with anything else, including her own input

bit. The same applies to Bob, whose input and output bits

we call y and b, respectively. The ‘‘magic’’ appears in the

form of a correlation between the pair of outputs and the

pair of inputs: the exclusive OR (sum modulo two, denoted

‘‘!’’) of the outputs is always equal to the logical AND of

the inputs: a ! b " x ^ y. Much like the correlations that

can be established by use of quantum entanglement, this

device is atemporal: Alice gets her output as soon as she

feeds in her input, regardless of if and when Bob feeds in

his input, and vice versa. Also inspired by entanglement,

this is a one-shot device: the correlation appears only as a

result of the first pair of inputs fed in by Alice and Bob. Of

course, they can have more than one NLB at their disposal,

which is then seen as a resource [4] of a different nature

than entanglement [5].

NLBs cannot be used by Alice and Bob to signal in-

stantaneously to one another. This is because the outputs

that can be observed are purely random from a local

perspective. In other words, NLBs are nonlocal, yet they

are causal: they cannot make an effect precede its cause in

the context of special relativity. We are interested in the

question of how well the correlation of NLBs can be

approximated by devices that follow the laws of physics.

Although originally presented differently, the CHSH

inequality can be recast in terms of imperfect NLBs. The

availability of shared entanglement allows Alice and Bob

to approximate NLBs with success probability
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This can be used to test local hidden-variable theories

because it follows also from CHSH that no local realistic

(classical) theory can succeed with probability greater than

3=4 if Alice and Bob are spacelike separated. Later,

Tsirelson [6] proved the optimality of the CHSH inequal-

ity, which translates into saying that quantum mechanics

does not allow for a success probability greater than } at

the game of simulating NLBs. See also Ref. [7] for an

information-theoretic proof of the same result.

There are two questions of interest in this Letter:

(1) Considering that perfect NLBs would not violate cau-

sality, why do the laws of quantum mechanics only allow

us to implement NLBs better than anything classically

possible, yet not perfectly? (2) Why do they provide us

with an approximation of NLBs that succeeds with proba-

bility } rather than something better?

Before we can pursue this line of thought further, we

need to review briefly the field of communication complex-

ity [8–11]. Assume Alice and Bob wish to compute some

Boolean function f%x; y& of input x, known to Alice only,

and input y, known to Bob only. Their concern is to

minimize the amount of communication required between

them for Alice to learn the answer. It is clear that this task

PRL 96, 250401 (2006)
P H Y S I C A L R E V I E W L E T T E R S

week ending
30 JUNE 2006

0031-9007=06=96(25)=250401(4)
250401-1 © 2006 The American Physical Society



Closed sets of nonlocal correlations

Foundations o f  Physics, Vol. 24, No. 3, 1994 

Quantum Nonlocality as an Axiom 
Sandu Popescu t and Daniel  Rohrlich 2 
Received July 2, 1993: revised July 19, 1993 

In the conventional approach to quantum mechanics, &determinism is an axiom and nonlocality is a theorem. We consider inverting the logical order, mak#1g nonlocality an axiom and indeterminism a theorem. Nonlocal "superquantum" correlations, preserving relativistic causality, can violate the CHSH inequality more strongly than any quantum correlations. 

What is the quantum principle? J. Wheeler named it the "Merlin principle" after the legendary magician who, when pursued, could change his form again and again. The more we pursue the quantum principle, the more it changes: from discreteness, to indeterminism, to sums over paths, to many worlds, and so on. By comparison, the relativity principle is easy to grasp. Relativity theory and quantum theory underlie all of physics, but we do not always know how to reconcile them. Here, we take nonlocality as the quantum principle, and we ask what nonlocality and relativistic causality together imply. It is a pleasure to dedicate this paper to Professor Fritz Rohrlich, who has contributed much to the juncture of quantum theory and relativity theory, including its most spectacular success, quantum electrodynamics, and who has written both on quantum paradoxes tll and the logical structure of physical theory, t2~ Bell t31 proved that some predictions of quantum mechanics cannot be reproduced by any theory of local physical variables. Although Bell worked within nonrelativistic quantum theory, the definition of local variable is relativistic: a local variable can be influenced only by events in its back- ward light cone, not by events outside, and can influence events in its 

i Universit6 Libre de Bruxelles, Campus Plaine, C.P. 225, Boulevard du Triomphe, B-1050 
Bruxelles, Belgium. 

2 School of Physics and Astronomy, TeI-Aviv University, Ramat-Aviv, Tel-Aviv 69978 Israel. 
379 

825/24/3-4 
0015-9018/94/0300-0379507.00/0 ~-, 1994 Plenum Publishing Corporation 

Limit on Nonlocality in Any World in Which Communication Complexity Is Not Trivial

Gilles Brassard,1 Harry Buhrman,2,3 Noah Linden,4 André Allan Méthot,1 Alain Tapp,1 and Falk Unger 3
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2ILLC, Universiteit van Amsterdam, Plantage Muidergracht 24, 1018 TV Amsterdam, The Netherlands

3Centrum voor Wiskunde en Informatica (CWI), Post Office Box 94079, 1090 GB Amsterdam, The Netherlands

4Department of Mathematics, University of Bristol, University Walk, Bristol, BS8 1TW, United Kingdom

(Received 2 March 2006; published 27 June 2006)

Bell proved that quantum entanglement enables two spacelike separated parties to exhibit classically

impossible correlations. Even though these correlations are stronger than anything classically achievable,

they cannot be harnessed to make instantaneous (faster than light) communication possible. Yet, Popescu

and Rohrlich have shown that even stronger correlations can be defined, under which instantaneous

communication remains impossible. This raises the question: Why are the correlations achievable by

quantum mechanics not maximal among those that preserve causality? We give a partial answer to this

question by showing that slightly stronger correlations would result in a world in which communication

complexity becomes trivial.

DOI: 10.1103/PhysRevLett.96.250401
PACS numbers: 03.65.Ud, 03.67.Hk, 03.67.Mn

Entanglement can be harnessed to accomplish amazing

information processing feats. The first proof that genuinely

nonclassical behavior could be produced by quantum-

mechanical devices was given by Bell, who proved that

entanglement enables two spacelike separated parties to

exhibit correlations that are stronger than anything allowed

by classical physics [1]. Later, Clauser, Horne, Shimony,

and Holt (CHSH), inspired by the work of Bell, proposed

another inequality [2], which was easier to translate into a

feasible experiment to test local hidden-variable theories.

Their proposal fits nicely into the more modern framework

of nonlocal boxes, introduced by Popescu and Rohrlich

[ [3], Eq. (7)].

A nonlocal box (NLB) is an imaginary device that has an

input-output port at Alice’s location and another one at

Bob’s, even though Alice and Bob can be spacelike sepa-

rated. Whenever Alice feeds a bit x into her input port, she

gets a uniformly distributed random output bit a, locally

uncorrelated with anything else, including her own input

bit. The same applies to Bob, whose input and output bits

we call y and b, respectively. The ‘‘magic’’ appears in the

form of a correlation between the pair of outputs and the

pair of inputs: the exclusive OR (sum modulo two, denoted

‘‘!’’) of the outputs is always equal to the logical AND of

the inputs: a ! b " x ^ y. Much like the correlations that

can be established by use of quantum entanglement, this

device is atemporal: Alice gets her output as soon as she

feeds in her input, regardless of if and when Bob feeds in

his input, and vice versa. Also inspired by entanglement,

this is a one-shot device: the correlation appears only as a

result of the first pair of inputs fed in by Alice and Bob. Of

course, they can have more than one NLB at their disposal,

which is then seen as a resource [4] of a different nature

than entanglement [5].

NLBs cannot be used by Alice and Bob to signal in-

stantaneously to one another. This is because the outputs

that can be observed are purely random from a local

perspective. In other words, NLBs are nonlocal, yet they

are causal: they cannot make an effect precede its cause in

the context of special relativity. We are interested in the

question of how well the correlation of NLBs can be

approximated by devices that follow the laws of physics.

Although originally presented differently, the CHSH

inequality can be recast in terms of imperfect NLBs. The

availability of shared entanglement allows Alice and Bob

to approximate NLBs with success probability

 } " cos2!
8
"

2#
!!!
2
p

4
$ 85:4%:

This can be used to test local hidden-variable theories

because it follows also from CHSH that no local realistic

(classical) theory can succeed with probability greater than

3=4 if Alice and Bob are spacelike separated. Later,

Tsirelson [6] proved the optimality of the CHSH inequal-

ity, which translates into saying that quantum mechanics

does not allow for a success probability greater than } at

the game of simulating NLBs. See also Ref. [7] for an

information-theoretic proof of the same result.

There are two questions of interest in this Letter:

(1) Considering that perfect NLBs would not violate cau-

sality, why do the laws of quantum mechanics only allow

us to implement NLBs better than anything classically

possible, yet not perfectly? (2) Why do they provide us

with an approximation of NLBs that succeeds with proba-

bility } rather than something better?

Before we can pursue this line of thought further, we

need to review briefly the field of communication complex-

ity [8–11]. Assume Alice and Bob wish to compute some

Boolean function f%x; y& of input x, known to Alice only,

and input y, known to Bob only. Their concern is to

minimize the amount of communication required between

them for Alice to learn the answer. It is clear that this task

PRL 96, 250401 (2006)
P H Y S I C A L R E V I E W L E T T E R S

week ending
30 JUNE 2006

0031-9007=06=96(25)=250401(4)
250401-1 © 2006 The American Physical Society

Letter
Nature 461, 1101-1104 (22 October 2009) | doi:10.1038/nature08400; Received 8 May 2009; Accepted 13 August 2009

Information causality as a physical principle
Marcin Paw owski1, Tomasz Paterek2, Dagomir Kaszlikowski2, Valerio Scarani2, Andreas

Winter2,3 & Marek ukowski1
Institute of Theoretical Physics and Astrophysics, University of Gda sk, 80-952 Gda sk, Poland

1.
Centre for Quantum Technologies and Department of Physics, National University of Singapore, 3 Science Drive 2,

117543 Singapore, Singapore

2.

Department of Mathematics, University of Bristol, Bristol BS8 1TW, UK

3.

Correspondence to: Marcin Paw owski1 Correspondence and requests for materials should be addressed to M.P.

(Email: dokmpa@univ.gda.pl).Quantum physics has remarkable distinguishing characteristics. For example, it

gives only probabilistic predictions (non-determinism) and does not allow

copying of unknown states (no-cloning1). Quantum correlations may be stronger

than any classical ones2, but information cannot be transmitted faster than light

(no-signalling). However, these features do not uniquely define quantum physics.

A broad class of theories exist that share such traits and allow even stronger (than

quantum) correlations3. Here we introduce the principle of 'information

causality' and show that it is respected by classical and quantum physics but

violated by all no-signalling theories with stronger than (the strongest) quantum

correlations. The principle relates to the amount of information that an observer

(Bob) can gain about a data set belonging to another observer (Alice), the contents

of which are completely unknown to him. Using all his local resources (which may

be correlated with her resources) and allowing classical communication from her,

the amount of information that Bob can recover is bounded by the information

volume (m) of the communication. Namely, if Alice communicates m bits to Bob,

the total information obtainable by Bob cannot be greater than m. For m = 0,

information causality reduces to the standard no-signalling principle. However,

no-signalling theories with maximally strong correlations would allow Bob access

to all the data in any m-bit subset of the whole data set held by Alice. If only one

bit is sent by Alice (m = 1), this is tantamount to Bob's being able to access the

value of any single bit of Alice's data (but not all of them). Information causality

may therefore help to distinguish physical theories from non-physical ones. We

suggest that information causality—a generalization of the no-signalling condition

—might be one of the foundational properties of nature.MORE ARTICLES LIKE THISThese links to content published by NPG are automatically generated.
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One of the most important problems in physics is to reconcile quantum mechanics with

general relativity, and some authors have suggested that this may be realized at the

expense of having to drop the quantum formalism in favour of a more general theory.

Here, we propose a mechanism to make general claims on the microscopic structure of the

Universe by postulating that any post-quantum theory should recover classical physics

in the macroscopic limit. We use this mechanism to bound the strength of correlations

between distant observers in any physical theory. Although several quantum limits are

recovered, such as the set of two-point quantum correlators, our results suggest that

there exist plausible microscopic theories of Nature that predict correlations impossible

to reproduce in any quantum mechanical system.

Keywords: non-local theories; quantum correlations; foundational physics

1. Introduction

At the beginning of the twenty-first century, one of the main goals of theoretical

physics is to come up with a theory that reconciles quantum mechanics and

general relativity. Currently, there are several approaches in this direction, such

as string theory (Polchinski 1998) or loop quantum gravity (Thiemann 2003;

Rovelli 2004; Smolin 2004). What most of these approaches have in common is

that they take the mathematical structure of quantum mechanics for granted and

then try to find a suitable dynamics, such that the resulting theory approaches

general relativity in some limit. The problem at stake is, thus, how to ‘quantize

gravity’. Such an approach may be doomed to fail, since it could very well be that

quantum mechanics is not a fundamental theory of Nature, but an effective model,

only valid within a specific range of energies. Indeed, some considerations about

black-hole evaporation suggest that certain axioms of quantum theory should be

re-examined (Page 1994).
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Bell proved that quantum entanglement enables two spacelike separated parties to exhibit classically

impossible correlations. Even though these correlations are stronger than anything classically achievable,

they cannot be harnessed to make instantaneous (faster than light) communication possible. Yet, Popescu

and Rohrlich have shown that even stronger correlations can be defined, under which instantaneous

communication remains impossible. This raises the question: Why are the correlations achievable by

quantum mechanics not maximal among those that preserve causality? We give a partial answer to this

question by showing that slightly stronger correlations would result in a world in which communication

complexity becomes trivial.
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Entanglement can be harnessed to accomplish amazing

information processing feats. The first proof that genuinely

nonclassical behavior could be produced by quantum-

mechanical devices was given by Bell, who proved that

entanglement enables two spacelike separated parties to

exhibit correlations that are stronger than anything allowed

by classical physics [1]. Later, Clauser, Horne, Shimony,

and Holt (CHSH), inspired by the work of Bell, proposed

another inequality [2], which was easier to translate into a

feasible experiment to test local hidden-variable theories.

Their proposal fits nicely into the more modern framework

of nonlocal boxes, introduced by Popescu and Rohrlich

[ [3], Eq. (7)].

A nonlocal box (NLB) is an imaginary device that has an

input-output port at Alice’s location and another one at

Bob’s, even though Alice and Bob can be spacelike sepa-

rated. Whenever Alice feeds a bit x into her input port, she

gets a uniformly distributed random output bit a, locally

uncorrelated with anything else, including her own input

bit. The same applies to Bob, whose input and output bits

we call y and b, respectively. The ‘‘magic’’ appears in the

form of a correlation between the pair of outputs and the

pair of inputs: the exclusive OR (sum modulo two, denoted

‘‘!’’) of the outputs is always equal to the logical AND of

the inputs: a ! b " x ^ y. Much like the correlations that

can be established by use of quantum entanglement, this

device is atemporal: Alice gets her output as soon as she

feeds in her input, regardless of if and when Bob feeds in

his input, and vice versa. Also inspired by entanglement,

this is a one-shot device: the correlation appears only as a

result of the first pair of inputs fed in by Alice and Bob. Of

course, they can have more than one NLB at their disposal,

which is then seen as a resource [4] of a different nature

than entanglement [5].

NLBs cannot be used by Alice and Bob to signal in-

stantaneously to one another. This is because the outputs

that can be observed are purely random from a local

perspective. In other words, NLBs are nonlocal, yet they

are causal: they cannot make an effect precede its cause in

the context of special relativity. We are interested in the

question of how well the correlation of NLBs can be

approximated by devices that follow the laws of physics.

Although originally presented differently, the CHSH

inequality can be recast in terms of imperfect NLBs. The

availability of shared entanglement allows Alice and Bob

to approximate NLBs with success probability

 } " cos2!
8
"
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2
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4
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This can be used to test local hidden-variable theories

because it follows also from CHSH that no local realistic

(classical) theory can succeed with probability greater than

3=4 if Alice and Bob are spacelike separated. Later,

Tsirelson [6] proved the optimality of the CHSH inequal-

ity, which translates into saying that quantum mechanics

does not allow for a success probability greater than } at

the game of simulating NLBs. See also Ref. [7] for an

information-theoretic proof of the same result.

There are two questions of interest in this Letter:

(1) Considering that perfect NLBs would not violate cau-

sality, why do the laws of quantum mechanics only allow

us to implement NLBs better than anything classically

possible, yet not perfectly? (2) Why do they provide us

with an approximation of NLBs that succeeds with proba-

bility } rather than something better?

Before we can pursue this line of thought further, we

need to review briefly the field of communication complex-

ity [8–11]. Assume Alice and Bob wish to compute some

Boolean function f%x; y& of input x, known to Alice only,

and input y, known to Bob only. Their concern is to

minimize the amount of communication required between

them for Alice to learn the answer. It is clear that this task
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(Email: dokmpa@univ.gda.pl).Quantum physics has remarkable distinguishing characteristics. For example, it

gives only probabilistic predictions (non-determinism) and does not allow

copying of unknown states (no-cloning1). Quantum correlations may be stronger

than any classical ones2, but information cannot be transmitted faster than light

(no-signalling). However, these features do not uniquely define quantum physics.

A broad class of theories exist that share such traits and allow even stronger (than

quantum) correlations3. Here we introduce the principle of 'information

causality' and show that it is respected by classical and quantum physics but

violated by all no-signalling theories with stronger than (the strongest) quantum

correlations. The principle relates to the amount of information that an observer

(Bob) can gain about a data set belonging to another observer (Alice), the contents

of which are completely unknown to him. Using all his local resources (which may

be correlated with her resources) and allowing classical communication from her,

the amount of information that Bob can recover is bounded by the information

volume (m) of the communication. Namely, if Alice communicates m bits to Bob,

the total information obtainable by Bob cannot be greater than m. For m = 0,

information causality reduces to the standard no-signalling principle. However,

no-signalling theories with maximally strong correlations would allow Bob access

to all the data in any m-bit subset of the whole data set held by Alice. If only one

bit is sent by Alice (m = 1), this is tantamount to Bob's being able to access the

value of any single bit of Alice's data (but not all of them). Information causality

may therefore help to distinguish physical theories from non-physical ones. We

suggest that information causality—a generalization of the no-signalling condition

—might be one of the foundational properties of nature.MORE ARTICLES LIKE THISThese links to content published by NPG are automatically generated.
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One of the most important problems in physics is to reconcile quantum mechanics with

general relativity, and some authors have suggested that this may be realized at the

expense of having to drop the quantum formalism in favour of a more general theory.

Here, we propose a mechanism to make general claims on the microscopic structure of the

Universe by postulating that any post-quantum theory should recover classical physics

in the macroscopic limit. We use this mechanism to bound the strength of correlations

between distant observers in any physical theory. Although several quantum limits are

recovered, such as the set of two-point quantum correlators, our results suggest that

there exist plausible microscopic theories of Nature that predict correlations impossible

to reproduce in any quantum mechanical system.
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1. Introduction

At the beginning of the twenty-first century, one of the main goals of theoretical

physics is to come up with a theory that reconciles quantum mechanics and

general relativity. Currently, there are several approaches in this direction, such

as string theory (Polchinski 1998) or loop quantum gravity (Thiemann 2003;

Rovelli 2004; Smolin 2004). What most of these approaches have in common is

that they take the mathematical structure of quantum mechanics for granted and

then try to find a suitable dynamics, such that the resulting theory approaches

general relativity in some limit. The problem at stake is, thus, how to ‘quantize

gravity’. Such an approach may be doomed to fail, since it could very well be that

quantum mechanics is not a fundamental theory of Nature, but an effective model,

only valid within a specific range of energies. Indeed, some considerations about

black-hole evaporation suggest that certain axioms of quantum theory should be

re-examined (Page 1994).
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been very successful. Unfortunately, all principles considered so far have a bipartite
formulation, but intrinsically multipartite principles, yet to be discovered, are necessary for
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multipartite principle stating that events involving different outcomes of the same local
measurement must be exclusive or orthogonal. We prove that it is equivalent to no-signalling
in the bipartite scenario but more restrictive for more than two parties. By exploiting this non-
equivalence, it is then demonstrated that some bipartite supra-quantum correlations do
violate the local orthogonality when distributed among several parties. Finally, we show how
its multipartite character allows revealing the non-quantumness of correlations for which
any bipartite principle fails. We believe that local orthogonality is a crucial ingredient for
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Bell proved that quantum entanglement enables two spacelike separated parties to exhibit classically

impossible correlations. Even though these correlations are stronger than anything classically achievable,

they cannot be harnessed to make instantaneous (faster than light) communication possible. Yet, Popescu

and Rohrlich have shown that even stronger correlations can be defined, under which instantaneous

communication remains impossible. This raises the question: Why are the correlations achievable by

quantum mechanics not maximal among those that preserve causality? We give a partial answer to this

question by showing that slightly stronger correlations would result in a world in which communication

complexity becomes trivial.
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Entanglement can be harnessed to accomplish amazing

information processing feats. The first proof that genuinely

nonclassical behavior could be produced by quantum-

mechanical devices was given by Bell, who proved that

entanglement enables two spacelike separated parties to

exhibit correlations that are stronger than anything allowed

by classical physics [1]. Later, Clauser, Horne, Shimony,

and Holt (CHSH), inspired by the work of Bell, proposed

another inequality [2], which was easier to translate into a

feasible experiment to test local hidden-variable theories.

Their proposal fits nicely into the more modern framework

of nonlocal boxes, introduced by Popescu and Rohrlich

[ [3], Eq. (7)].

A nonlocal box (NLB) is an imaginary device that has an

input-output port at Alice’s location and another one at

Bob’s, even though Alice and Bob can be spacelike sepa-

rated. Whenever Alice feeds a bit x into her input port, she

gets a uniformly distributed random output bit a, locally

uncorrelated with anything else, including her own input

bit. The same applies to Bob, whose input and output bits

we call y and b, respectively. The ‘‘magic’’ appears in the

form of a correlation between the pair of outputs and the

pair of inputs: the exclusive OR (sum modulo two, denoted

‘‘!’’) of the outputs is always equal to the logical AND of

the inputs: a ! b " x ^ y. Much like the correlations that

can be established by use of quantum entanglement, this

device is atemporal: Alice gets her output as soon as she

feeds in her input, regardless of if and when Bob feeds in

his input, and vice versa. Also inspired by entanglement,

this is a one-shot device: the correlation appears only as a

result of the first pair of inputs fed in by Alice and Bob. Of

course, they can have more than one NLB at their disposal,

which is then seen as a resource [4] of a different nature

than entanglement [5].

NLBs cannot be used by Alice and Bob to signal in-

stantaneously to one another. This is because the outputs

that can be observed are purely random from a local

perspective. In other words, NLBs are nonlocal, yet they

are causal: they cannot make an effect precede its cause in

the context of special relativity. We are interested in the

question of how well the correlation of NLBs can be

approximated by devices that follow the laws of physics.

Although originally presented differently, the CHSH

inequality can be recast in terms of imperfect NLBs. The

availability of shared entanglement allows Alice and Bob

to approximate NLBs with success probability
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8
"

2#
!!!
2
p

4
$ 85:4%:

This can be used to test local hidden-variable theories

because it follows also from CHSH that no local realistic

(classical) theory can succeed with probability greater than

3=4 if Alice and Bob are spacelike separated. Later,

Tsirelson [6] proved the optimality of the CHSH inequal-

ity, which translates into saying that quantum mechanics

does not allow for a success probability greater than } at

the game of simulating NLBs. See also Ref. [7] for an

information-theoretic proof of the same result.

There are two questions of interest in this Letter:

(1) Considering that perfect NLBs would not violate cau-

sality, why do the laws of quantum mechanics only allow

us to implement NLBs better than anything classically

possible, yet not perfectly? (2) Why do they provide us

with an approximation of NLBs that succeeds with proba-

bility } rather than something better?

Before we can pursue this line of thought further, we

need to review briefly the field of communication complex-

ity [8–11]. Assume Alice and Bob wish to compute some

Boolean function f%x; y& of input x, known to Alice only,

and input y, known to Bob only. Their concern is to

minimize the amount of communication required between

them for Alice to learn the answer. It is clear that this task
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gives only probabilistic predictions (non-determinism) and does not allow

copying of unknown states (no-cloning1). Quantum correlations may be stronger

than any classical ones2, but information cannot be transmitted faster than light

(no-signalling). However, these features do not uniquely define quantum physics.

A broad class of theories exist that share such traits and allow even stronger (than

quantum) correlations3. Here we introduce the principle of 'information

causality' and show that it is respected by classical and quantum physics but

violated by all no-signalling theories with stronger than (the strongest) quantum

correlations. The principle relates to the amount of information that an observer

(Bob) can gain about a data set belonging to another observer (Alice), the contents

of which are completely unknown to him. Using all his local resources (which may

be correlated with her resources) and allowing classical communication from her,

the amount of information that Bob can recover is bounded by the information

volume (m) of the communication. Namely, if Alice communicates m bits to Bob,

the total information obtainable by Bob cannot be greater than m. For m = 0,

information causality reduces to the standard no-signalling principle. However,

no-signalling theories with maximally strong correlations would allow Bob access

to all the data in any m-bit subset of the whole data set held by Alice. If only one

bit is sent by Alice (m = 1), this is tantamount to Bob's being able to access the

value of any single bit of Alice's data (but not all of them). Information causality

may therefore help to distinguish physical theories from non-physical ones. We

suggest that information causality—a generalization of the no-signalling condition

—might be one of the foundational properties of nature.MORE ARTICLES LIKE THISThese links to content published by NPG are automatically generated.
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One of the most important problems in physics is to reconcile quantum mechanics with

general relativity, and some authors have suggested that this may be realized at the

expense of having to drop the quantum formalism in favour of a more general theory.

Here, we propose a mechanism to make general claims on the microscopic structure of the

Universe by postulating that any post-quantum theory should recover classical physics

in the macroscopic limit. We use this mechanism to bound the strength of correlations

between distant observers in any physical theory. Although several quantum limits are

recovered, such as the set of two-point quantum correlators, our results suggest that

there exist plausible microscopic theories of Nature that predict correlations impossible

to reproduce in any quantum mechanical system.

Keywords: non-local theories; quantum correlations; foundational physics

1. Introduction

At the beginning of the twenty-first century, one of the main goals of theoretical

physics is to come up with a theory that reconciles quantum mechanics and

general relativity. Currently, there are several approaches in this direction, such

as string theory (Polchinski 1998) or loop quantum gravity (Thiemann 2003;

Rovelli 2004; Smolin 2004). What most of these approaches have in common is

that they take the mathematical structure of quantum mechanics for granted and

then try to find a suitable dynamics, such that the resulting theory approaches

general relativity in some limit. The problem at stake is, thus, how to ‘quantize

gravity’. Such an approach may be doomed to fail, since it could very well be that

quantum mechanics is not a fundamental theory of Nature, but an effective model,

only valid within a specific range of energies. Indeed, some considerations about

black-hole evaporation suggest that certain axioms of quantum theory should be

re-examined (Page 1994).
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We present a fundamental concept—closed sets of correlations—for studying nonlocal correlations. We
argue that sets of correlations corresponding to information-theoretic principles, or more generally to consistent
physical theories, must be closed under a natural set of operations. Hence, studying the closure of sets of
correlations gives insight into which information-theoretic principles are genuinely different, and which are
ultimately equivalent. This concept also has implications for understanding why quantum nonlocality is lim-
ited, and for finding constraints on physical theories beyond quantum mechanics.

DOI: 10.1103/PhysRevA.80.062107 PACS number!s": 03.65.Ud

I. INTRODUCTION

Correlations are a central concept in physics. While in
classical physics correlations must satisfy two fundamental
principles—causality and locality—in quantum mechanics
!QM" the latter must be abandoned. This remarkable feature,
known as quantum nonlocality, is at the heart of quantum
information processing and allows tasks to be performed
which would be impossible classically, such as secure cryp-
tography #1$ and the reduction in communication complexity
#2$.

However, nonlocal correlations stronger than those al-
lowed by QM can also respect relativistic causality #3$.
These nonsignaling postquantum correlations have been sub-
ject to intensive research #4–17$, and were shown to have
strong information-theoretic capabilities, allowing for pow-
erful tasks—impossible in QM—to be peformed. For in-
stance, certain postquantum correlations collapse communi-
cation complexity #11–13$; allow for better-than-classical
“nonlocal computation” #14$; and violate “information cau-
sality” #15$.

Here we present a fundamental concept—closed sets of
correlations—underlying the structure of nonlocal correla-
tions. We argue that physically significant sets of correlations
must be closed under a natural class of operations.

The immediate relevance of this concept is twofold. First,
we note that all information-theoretic principles correspond
to closed sets of correlations. For instance, the set of corre-
lations that do not make communication complexity trivial is
closed. If two different information-theoretic principles turn
out to correspond to the same closed set then they are in fact
equivalent as far as the resources needed to implement them
are concerned. Therefore, studying the closure of sets of cor-
relations gives insight into which information-theoretic prin-
ciples are genuinely different, and which are ultimately
equivalent. This also leads one to ask: is there an infinite
number of closed sets or only finitely many? If it was found
that only a small number of closed sets can exist, then most
information-theoretic principles would turn out to be the
same.

More importantly, correlations allowed by any self-
consistent physical theory must form a closed set. For in-

stance in classical mechanics, it is impossible to generate
nonlocal correlations from local ones. Similarly, postquan-
tum correlations cannot be generated within the framework
of QM. From this perspective, the concept of closure gives
insight into why quantum nonlocality is limited, and pro-
vides a platform for finding physical theories beyond QM.

We will work here in the formalism of nonsignaling boxes
#4$. The natural set of operations we consider correspond to
wirings #6,16$, which can be thought of as classical circuitry
used to locally connect several nonsignaling boxes in order
to obtain a new box. A set of boxes R is said to be closed
under wirings when all boxes obtainable by wiring boxes in
R are also contained in R. Interestingly, we shall see that
finding closed sets is a nontrivial task.

II. PRELIMINARIES

Let us recall that bipartite nonsignaling correlations can
be conveniently viewed in terms of black boxes shared be-
tween two parties, Alice and Bob. Alice and Bob input vari-
ables x and y at their ends of the box, respectively, and get
outputs a and b. The behavior of a given box is fully de-
scribed by a set of joint probabilities P!ab %xy". We focus on
the case of binary inputs and outputs, i.e., a ,b ,x ,y! &0,1'.
In this case, the full set NS of nonsignaling boxes forms an
eight-dimensional polytope #4$ which has 24 vertices: 8 ex-
tremal nonlocal boxes and 16 local deterministic boxes. The
extremal nonlocal correlations have the form

PNL
!"#!ab%xy" = (1

2
if a ! b = xy ! !x ! "y ! #

0 otherwise
) !1"

where ! ," ,#! &0,1', and the canonical Popescu-Rohrlich
!PR" #3,4$ box corresponds to PR= PNL

000. Similarly, the local
deterministic boxes are given by

PL
!"#$!ab%xy" = *1 if a = !x ! " b = #y ! $

0 otherwise
+ !2"

The set L of local boxes forms a subpolytope of the full
nonsignaling polytope. NS has 16 facets !positivity facets",
and L has 8 additional facets, which correspond to the 8
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Local measurements on bipartite physical systems

p(a, b|x, y) = the probability of outcomes a, b under measurement
settings x, y

No-signaling: instantaneous signaling is impossible
p(a|xy) is independent of y
p(b|xy) is independent of x
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Isotropic boxes

x

a

y

b

Example: x, y, a, b ∈ {0, 1}, and 0 ≤ η ≤ 1

PRη(a, b|x, y) :=

{
1+η

4 if a⊕ b = xy,
1−η

4 otherwise.



Wirings

1 1

2 2

Wirings are the local operations in the box world

[Allcock et al. ’09] The set of physical non-local boxes is closed under
wirings

Problem: 1/2 ≤ η′ < η ≤ 1.
Can we generate PRη from some copies of PRη′ under wirings?

No if there are two [Short ’09] or at most nine [Forster ’11] copies of
PRη′ available
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Tensorization of measures of correlation

A1 B1

An Bn

A0 B0

Problem: Given some samples of pAB

can we generate one sample from qA′B′

under local operations?

Measures of correlation are monotone
under local operations

I(A,B)p < I(A′,B′)q ⇒ No NOT quite right!

I(An,Bn)pn = nI(A,B)p.

[Tensorization]: Is there a measure of correlation ρ such that

ρ(An,Bn)pn = ρ(A,B)p?

Maximal correlation
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Maximal correlation

Bipartite distribution pAB

ρ(A,B) := max
Cov(f , g)√

Var[fA]Var[gB]
fA : A → R, gB : B → R

0 ≤ ρ(A,B) ≤ 1, ρ(A,B) = 0 iff pAB = pA · pB

[Tensorization]: ρ(An,Bn) = ρ(A,B)

[Data processing]: ρ(·, ·) is monotone under local operations

Maximal correlation for non-local boxes:

ρ(A,B|X,Y) := max
x,y

ρ(A,B|X = x,Y = y)
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Maximal correlation under wirings

x

a

y

b

Lemma: For any no-signaling box p(ab|xy) we have

ρ(A,B) ≤ max{ρ(A,B|X,Y), ρ(X,Y)}.

Proof:
E[fg] = EXYEAB|XY [fg]

≤EXY

[
EA|XY [f ] · EB|XY [g] + ρ

√
VarA|XY [f ] · VarB|XY [g]

]
= EXY

[
EA|X [f ] · EB|Y [g]

]
+ ρEXY

[√
VarA|X [f ] · VarB|Y [g]

]
≤EXEA|X [f ] · EYEB|Y [g] + ρ

√
VarXEA|X [f ] · VarYEB|Y [g] + ρEXY

[√
VarA|X [f ] · VarB|Y [g]

]
≤EXEA|X [f ] · EYEB|Y [g] + ρ

√
VarXEA|X [f ] · VarYEB|Y [g] + ρ

√
EXVarA|X [f ] · EY VarB|Y [g]

≤EAX [f ] · EBY [g] + ρ
√(

VarXEA|X [f ] + EXVarA|X [f ]
) (

VarYEB|Y [g] + EY VarB|Y [g]
)

=EAX [f ] · EBY [g] + ρ
√

VarAX [f ]VarBY [g].
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Maximal correlation under wirings

1 1

2 2

x0 y0

b0a0

c d

Theorem
Maximal correlation of no-signaling boxes does not increase under wirings.

The proof doesn’t work for these types of wirings! We need new tools.
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Hypercontractivity ribbon

(1, 1)

[Ahlswede, Gács ’76] (λ1, λ2) ∈ R(A,B) iff

E[fAgB] ≤ ‖fA‖ 1
λ1
‖gB‖ 1

λ2
, ∀fA, gB

Schatten norm: ‖fA‖ 1
λ1

= E
[
|fA|1/λ1

]λ1

[Nair ’14] (λ1, λ2) ∈ R(A,B) iff:

I(U; AB) ≥ λ1I(U; A) + λ2I(U; B), ∀pU|AB

R(A,B) = [0, 1]2 iff A,B are independent

[Tensorization]: R(An,Bn) = R(A,B)

[Data processing]: R(·, ·) expands under local operations
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Hypercontractivity ribbon under wirings

Hypercontractivity ribbon for non-local boxes:

R(A,B|X,Y) :=
⋂

x,y

R(A,B|X = x,Y = y).

Theorem

Suppose that a no-signaling box p(a′b′|x′y′) can be generated from some
copies of a box p(ab|xy) under wirings. Then

R(A,B|X,Y) ⊆ R(A′,B′|X′,Y ′).

Proof: Chain rule!
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Example: Isotropic boxes

PRη(a, b|x, y) :=

{
1+η

4 if a⊕ b = xy,
1−η

4 otherwise.

ρ(PRη) = η

Corollary

For 0 ≤ η′ < η ≤ 1, using an arbitrary number of copies of PRη′ , a
single copy of PRη cannot be generated under wirings.

For 1/
√

2 ≤ η′ < η ≤ 1, using an arbitrary number of copies of PRη′ , a
single copy of PRη cannot be generated under wirings with shared
randomness.
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Ribbon in terms of a lower convex envelope
Computation of maximal correlation is easy.
How about computation of the ribbon?

Define Υ(·) on the probability simplex by

qAB 7→ Υ(qAB) = λ1H(qA) + λ2H(qB)− H(qAB)

Let Υ̃ be the lower convex envelope of Υ

distributions

⌥

e⌥

Lemma

For every distribution pAB, we have (λ1, λ2) ∈ R(A,B) if and only if
Υ(pAB) = Υ̃(pAB).
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distributions
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Definition: (λ1, λ2) ∈ S(A,B) if

Var[f ] ≥ λ1VarAEB|A[f ] + λ2VarBEA|B[f ], ∀fAB

R(A,B) ⊆ S(A,B)

[Tensorization]: S(An,Bn) = S(A,B)

[Data processing]: S(·, ·) expands under local operations
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Maximal correlation ribbon for non-local boxes

Maximal correlation ribbon for non-local boxes:

S(A,B|X,Y) :=
⋂

x,y

S(A,B|X = x,Y = y).

Theorem

Suppose that a no-signaling box p(a′b′|x′y′) can be generated from some
copies of box p(ab|xy) under wirings. Then

S(A,B|X,Y) ⊆ S(A′,B′|X′,Y ′).

Theorem

ρ2(A,B) = inf
{

1−λ1
λ2

∣∣∣ (λ1, λ2) ∈ S(A,B)
}

Maximal correlation is monotone under wirings
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Summary

Introduced hypercontractivity ribbon for non-local boxes and
Showed that it expands under wirings

Defined Maximal correlation ribbon

Showed that maximal correlation ribbon expands under wirings

Characterized maximal correlation in terms of maximal correlation
ribbon

Maximal correlation is monotone under wirings

There is a continuum of closed sets of boxes
Was a conjecture [Lang, Vértesi, Navascués ’14]


